Organic Halides

Derivatives of alkanes where one or more hydrogen atoms is replaced by a halogen
Nomenclature

- Named in a similar manner as alkanes
- 1. Name the longest continuous carbon chain
- 2. Name & number substituents in alphabetical order.

- Ex. 1:

- Ex. 2:
Reactions of Organic Halides

1. Nucleophilic Substitution Reactions
 - Reagent is the nucleophile; halide is the “leaving group”
 - Halogens are easily displaced by other groups
 - Nucleophile – may be a neutral molecule or a negative ion
 - Must have an unshared pair of electrons with which to bond to the carbon atoms
 - Leaving group – takes with it the pair of electrons that bonded it to the carbon atom
• Elimination reactions compete with substitution reactions

 - To favor substitution - low concentrations of acid or base & high concentration of nucleophile

 - To favor elimination - high concentrations of acid or base catalyst

 - There are two possible nucleophilic substitution reactions: S_N^1 or S_N^2
S_N^1 mechanism

- A two-step process

 - a. Spontaneous departure of the leaving group (X^-) generates a carbocation intermediate

 - b. Either side of the newly formed carbocation intermediate is open to nucleophilic attack, producing a **racemic** mixture of products

- Ex.: **works best for tertiary alkyl halides**
\textit{S}_N^2 \text{ mechanism}

- A one step direct displacement process
- Nucleophile attacks the C-X bond & the three remaining bonds on that carbon atom become inverted
- The rate at which this proceeds depends on two things: the concentration of the nucleophile and the concentration of the alkyl halide
- **Works for primary and secondary alkyl halides**
I. Reactions with Oxygen Nucleophiles

• 1. Formation of Alcohols
 – A. Hydrolysis - S_{N1} mechanism
 – Ex.:
 – B. Reaction with Aqueous Hydroxide - S_{N2} mechanism
 – Ex.:
2. Formation of Ethers
 - A. Reaction with Alcohols - S_N^1 mechanism
 - Ex.:

 - B. Williamson Synthesis - S_N^2 mechanism; reacts with sodium alkoxide
 - Ex.:

 - Ex.:
II. Reactions with Sulfur Nucleophiles

• 1. Formation of thiols - S_N^2 mechanism
 - Ex.
 - Ex.

• 2. Formation of thioethers - S_N^2 mechanism
 - Ex.
 - Ex.
III. Reactions with Nitrogen Nucleophiles

• 1. Formation of Primary Amines - S_N^2 mechanism; reagent is NH_3
 • Ex.:

• Ex.:

• Ex.:
2. Reaction of Primary & Secondary Amines - S_N^2 mechanism

- Primary amines form secondary amines
 - Ex.:

- Secondary amines form tertiary amines
 - Ex.;
IV. Reactions with Carbon Nucleophiles

- S_N^2 mechanism
- Reagent is cyanide (CN)
- Ex.:

- Ex.:

V. Nucleophilic Aromatic Substitution

• Simple aromatic halides are inert to most nucleophiles - NO REACTION
 - Replacement does occur if a strongly electron-withdrawing group (-NO$_2$, CN) is ortho or para to the halogen
Preparation of Organic Halides

1. Halogenation of Hydrocarbons
 - A. Substitution of Alkanes
 - B. Substitution of Alkenes
 - C. Substitution of Aromatics
 - i. Substitution on the ring
 - ii. Substitution on the side chain
• 2. Substitution of Alcohols

• 3. Hydrohalogenation of Alkenes

• 4. Halogen Exchange – used to make iodides & fluorides from bromides & chlorides